Effects of the testicular feminization mutation (tfm) of the androgen receptor gene on BSTMPM volume and morphology in rats.

نویسندگان

  • Alfredo Durazzo
  • John A Morris
  • S Marc Breedlove
  • Cynthia L Jordan
چکیده

The posteromedial bed nucleus of the stria terminalis (BSTMPM) is an important component of the extended amygdala that is sexually dimorphic in rats. We examined the effect of the testicular feminization mutation (tfm), which renders the androgen receptor (AR) dysfunctional, on BSTMPM volume and average somal area. As expected, we found a significant sex difference in the volume of the BSTMPM, with females having a smaller BSTMPM than wild type males. Size of the BSTMPM in tfm males was also significantly smaller than that of wildtype males, although this difference was significant only on the left side. We found no sex difference in BSTMPM somal areas. These findings support the role of androgen receptors in the sexual differentiation of this nucleus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial demasculinization of several brain regions in adult male (XY) rats with a dysfunctional androgen receptor gene.

The adult rat posterodorsal medial amygdala (MePD) is sexually dimorphic in regional volume and neuronal soma size, both of which are larger in males than in females. This sexual dimorphism is entirely dependent on adult circulating levels of testicular androgens, and both androgen and estrogen treatment can masculinize MePD structure. We examined male rats that are rendered androgen-insensitiv...

متن کامل

Androgen spares androgen-insensitive motoneurons from apoptosis in the spinal nucleus of the bulbocavernosus in rats.

The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic motor nucleus in the rat lumbar spinal cord. The sex difference arises through the androgenic sparing of the motoneurons and their target muscles from ontogenetic cell death. Indirect evidence suggests that androgen acts on the target muscles rather than directly on SNB motoneurons to spare them from death. The testicular f...

متن کامل

Abolition of hypertension-induced end-organ damage by androgen receptor blockade in transgenic rats harboring the mouse ren-2 gene.

A sexual dimorphism in hypertension has been observed in both human and laboratory animal studies. The mechanisms by which male sex hormones regulate cardiovascular homeostasis are still not yet fully understood and represent the subject of this study. The possible involvement of androgen receptors in the development of hypertension and end-organ damage in transgenic rats harboring the mouse Re...

متن کامل

Neuronal size in the spinal nucleus of the bulbocavernosus: direct modulation by androgen in rats with mosaic androgen insensitivity.

The motoneurons of the spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus and levator ani, form a sexually dimorphic circuit that is developmentally dependent on androgen exposure and exhibits numerous structural and functional changes in response to androgen exposure in adulthood. Castration of male adult rats causes shrinkage of SNB somata, and testosteron...

متن کامل

Male rats with the testicular feminization mutation of the androgen receptor display elevated anxiety-related behavior and corticosterone response to mild stress.

Testosterone influences the hypothalamic-pituitary-adrenal axis, anxiety-related behavior, and sensorimotor gating in rodents, but little is known about the role of the androgen receptor (AR) in mediating these influences. We compared levels of the stress hormone corticosterone at baseline and following exposure to a novel object in an open field in wild type (wt) male and female rats, and male...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience letters

دوره 419 2  شماره 

صفحات  -

تاریخ انتشار 2007